

# Application of *In Vitro*Toxicogenomics Towards Drug Safety Evaluation

Jeffrey F. Waring
Group Leader, Toxicogenomics
Abbott Laboratories



#### **Toxicogenomics**

## The application of gene expression analysis systems towards drug safety evaluation



#### Information Gained from Toxicogenomics

- Patterns of gene expression changes associated with toxicity and with potential predictive value
- Specific gene expression changes related to the mechanism of toxicity
- Gene expression changes that can be used to bridge animal and human safety studies



#### **Toxicological Characterization in Discovery**





#### Traditional In Vitro Toxicology Paradigm



- Cytotoxicity
  - -MIII
- Mitochondrial Damage
  - -Mitochondrial respiration
  - -Mitochondrial permeability transition
- Oxidative Stress
  - -GSH depletion
  - -ATP
- Apoptosis
  - -Tunnel
  - -Caspase
- Steatosis
  - -Nile red
- Phospholipidosis
  - -NBD-PE staining of hepatocytes

Several Cell Types Several Doses Several Assays Lots of Reagents Data points: +++++
Interpretation: ????



#### The In Vitro Toxicogenomics Paradigm

#### Collaboration with Iconix Pharmaceuticals



- Apoptosis
- Necrosis
- Canalicular cholestasis
- Microvesicular steatosis
- Peroxisome proliferation
- Ah-receptor agonist
- Phospholipidosis

One Cell Type One Dose One Assay One Reagent Type

Data points: Limited Interpretation: Simple



### Mechanistically Similar Toxicants Induce Similar Gene Expression Changes *In Vivo*





### Signatures Can Be Generated for Mechanistic Class *In Vivo*





### Toxicogenomics *in vitro* Assays: Rat Hepatocyte Protocol

- Isolated rat hepatocytes cultured for 24 hours before treatment
- Cells treated for 24 hours with compound at TC20 concentration
- 3 isolations used for all compounds
- Hepatocytes treated with compounds that are prototypical inducers of the toxicity
- Signatures created by identifying similar gene expression changes caused by compounds in the same mechanistic class
- 45 reference compounds
- 15 validation compounds
- 40 negative control compounds



#### Expression Profiles in Primary Rat Hepatocytes





#### In Vitro Toxicogenomics

- Do compounds with similar mechanisms of toxicity give similar expression profiles in vitro?
- Can gene sets or signatures be identified that can be used to screen compounds?
- Can signatures be used to classify new compounds?
- What concentration should be used to screen new compounds?
- Can toxicogenomics be performed using assays that are more high throughput?
- How should these data be used for compound selection in drug discovery?



#### In Vitro Toxicogenomics

- Do compounds with similar mechanisms of toxicity give similar expression profiles in vitro?
- Can gene seis or signature be identified that can be used to screen compounds?
- Can signatures be used to classify new compounds?
- What concentration should be used to screen new compounds?
- Can toxicogenomics be performed using assays that are more high throughput?
- How should these data be used for compound selection in drug discovery?



#### Expression Profiles in Primary Rat Hepatocytes



#### In Vitro Toxicogenomics

- Do compounds with similar mechanisms of toxicity give similar expression profiles in vitro?
- Can gene sets or signature be identified that can be used to screen compounds?
- Can signatures be used to classify new compounds?
- What concentration should be used to screen new compounds?
- Can toxicogenomics be performed using assays that are more high throughput?
- How should these data be used for compound selection in drug discovery?



#### Compounds Tested for In Vitro Toxicogenomics

| Compound Classes        | Compounds                                   |  |  |
|-------------------------|---------------------------------------------|--|--|
| AhR agonist             | 3MC, Aroclor, Beta Napthoflavone            |  |  |
| Peroxisome Proliferator | Clofibrate, Bezafibrate, WY-14643           |  |  |
| Negative Control        | Penicillin, Spectinomycin, Chlorpheniramine |  |  |



### Compounds Classification using Hierarchical Clustering Analysis













#### In Vitro Toxicogenomics

- Do compounds with similar mechanisms of toxicity give similar expression profiles in vitro?
- Can gene sets or signature be identified that can be used to screen compounds?
- Can signatures be used to classify new compounds?
- What concentration should be used to screen new compounds?
- Can toxicogenomics be performed using assays that are more high throughput?
- How should these data be used for compound selection in drug discovery?



#### Validation Compounds for In Vitro Signatures

#### AhR Agonist

- Benzo(a)pyrene
- A-277249
- Omeprazole

#### Peroxisome Proliferator

- Fenoprofen
- Indomethacin

#### Negatives

- 3',3-diindolylmethane (DIM)
- Troglitazone



### In Vitro Signatures Correctly Classify Known Hepatotoxins





### In Vitro Signatures Correctly Classify Known Hepatotoxins





#### In Vitro Toxicogenomics

- Do compounds with similar mechanisms of toxicity give similar expression profiles in vitro?
- Can gene seis or signature be identified that can be used to screen compounds?
- Can signatures be used to classify new compounds?
- What concentration should be used to screen new compounds?
- Can toxicogenomics be performed using assays that are more high throughput?
- How should these data be used for compound selection in drug discovery?



#### Phospholipidosis Signature

| Compound         | Dose                 | Result in Phospho.<br>Cell Assay | Phospholipido sis Signature |
|------------------|----------------------|----------------------------------|-----------------------------|
| A-001            | <b>40</b> μ <b>M</b> | +                                | +                           |
| A-002            | <b>40</b> μ <b>M</b> | ++                               | ++                          |
| A-003            | <b>40</b> μ <b>M</b> | +                                | -                           |
| Cyclophosphamide | 1.32 mM#             | NA                               | -                           |
| Doxorubicin      | 1.5 μ <b>M</b> #     | NA                               | -                           |
| Methapyrilene    | 300 μ <b>M</b> #     | NA                               | -                           |
| Rifampin         | 125 μ <b>M</b> #     | NA                               | -                           |

#: dose corresponding to TC20 at 24 hr.



#### Phospholipidosis Signature



#### Phospholipidosis Cell Based Assay





#### In Vitro Toxicogenomics

- Do compounds with similar mechanisms of toxicity give similar expression profiles in vitro?
- Can gene seis or signature be identified that can be used to screen compounds?
- Can signatures be used to classify new compounds?
- What concentration should be used to screen new compounds?
- Can toxicogenomics be performed using assays that are more high throughput?
- How should these data be used for compound selection in drug discovery?



### Gene Expression Profiling: Moving Toward Higher Throughput





#### TaqMan Micro Fluidic Card



- Capable of identifying expression changes up to 200 genes
- Ability to process 20-50 samples in a week
- Cost under \$100 a sample
- Flexibility to add new genes



#### RT-PCR Card vs. Microarray







#### Prediction of AhR Activator

#### **Training Set**



Prediction Score by Microarray





#### Prediction of AhR Activator

### Validation Set **Training Set** Prediction Score by qRT-PCR Score by qRT-PCR Prediction Prediction Score by Microarray Prediction Score by Microarray



#### In Vitro Toxicogenomics

- Do compounds with similar mechanisms of toxicity give similar expression profiles in vitro?
- Can gene sets or signature be identified that can be used to screen compounds?
- Can signatures be used to classify new compounds?
- What concentration should be used to screen new compounds?
- Can toxicogenomics be performed using assays that are more high throughput?
- How should these data be used for compound selection in drug discovery?



### Evaluation of Compounds Using *In Vitro* Toxicogenomics





### Evaluation of Compounds Using *In Vitro* Toxicogenomics



#### Can Safety Margins Be Determined?





#### Human PBMCs for In Vitro Characterization

- Identify toxicities that may be more relevant for humans
- Human PBMCs would reflect genetic diversity present in human population
- Identify biomarkers that can be readily transferred to the clinic



#### In Vitro Screening Using Human PBMCs

| Compound Name  | Dose   |            | Classification | Structure Activity                                               |                                                     |  |  |
|----------------|--------|------------|----------------|------------------------------------------------------------------|-----------------------------------------------------|--|--|
| Compound_Name  | uM     | MTD (TC20) | MFD            | Ciassilication                                                   | Structure_Activity                                  |  |  |
| DOXORUBICIN    | 3.59   | Yes        |                |                                                                  | DNA intercalator, anthracycline                     |  |  |
| CARBOPLATIN    | 1456.5 | Yes        |                | DNA damage                                                       | DNA-alkylator, platin                               |  |  |
| CISPLATIN      | 152.6  | Yes        |                | DIVA damage                                                      | DNA-alkylator, platin                               |  |  |
| OXALIPLATIN    | 38.6   | Yes        |                |                                                                  | DNA-alkylator, platin                               |  |  |
| ETOPOSIDE      | 56.6   | Yes        |                | Anti-neoplastic DNA topoisomerase II inhibitor                   |                                                     |  |  |
| ACETAMINOPHEN  | 6509.2 | Yes        |                | Anti-inflammatory                                                | NSAID, COX-3, acetaminophen like                    |  |  |
| PREDNISOLONE   | 400    |            | Yes            |                                                                  | Glucocorticoid and mineralocorticoid receptor agoni |  |  |
| CORTISONE      | 80     |            | Yes            | Immunosuppression                                                | Glucocorticoid receptor agonist                     |  |  |
| DEXAMETHASONE  | 400    | Yes        | Yes            | Illillianosuppiession                                            | Glucocorticoid receptor agonist                     |  |  |
| CYCLOSPORIN A  | 8.58   | Yes        |                |                                                                  | Inhibits T-cell activation                          |  |  |
| CHLORPROMAZINE | 25     | Yes        |                | Phospholipidosis Dopamine receptor antagonist (D), phenothiazine |                                                     |  |  |
| RIFAMPIN       | 80.25  | Yes        |                | PXR activator                                                    | RNA polymerase inhibitor                            |  |  |
| CLOTRIMAZOLE   | 17.6   | Yes        |                | i Al activator                                                   | Sterol 14-demethylase inhibitor                     |  |  |
| BENZO[A]PYRENE | 80     |            | Yes            | AhR Agonist Toxicant, Ah receptor agonist                        |                                                     |  |  |



#### In Vitro Screening Using Human PBMCs

| Compound Name  | Dose   |            |     | Classification     |  |  |
|----------------|--------|------------|-----|--------------------|--|--|
| Compound_Name  | uM     | MTD (TC20) | MFD | Classilication     |  |  |
| DOXORUBICIN    | 3.59   | Yes        |     | -DNA damage        |  |  |
| CARBOPLATIN    | 1456.5 | Yes        |     |                    |  |  |
| CISPLATIN      | 152.6  | Yes        |     |                    |  |  |
| OXALIPLATIN    | 38.6   | Yes        |     | ]                  |  |  |
| ETOPOSIDE      | 56.6   | Yes        |     | Anti-neoplastic    |  |  |
| ACETAMINOPHEN  | 6509.2 | Yes        |     | Anti-inflammatory  |  |  |
| PREDNISOLONE   | 400    |            | Yes | -Immunosuppression |  |  |
| CORTISONE      | 80     |            | Yes |                    |  |  |
| DEXAMETHASONE  | 400    | Yes        | Yes |                    |  |  |
| CYCLOSPORIN A  | 8.58   | Yes        |     |                    |  |  |
| CHLORPROMAZINE | 25     | Yes        |     | Phospholipidosis   |  |  |
| RIFAMPIN       | 80.25  | Yes        |     | PXR activator      |  |  |
| CLOTRIMAZOLE   | 17.6   | Yes        |     |                    |  |  |
| BENZO[A]PYRENE | 80     |            | Yes | AhR Agonist        |  |  |





#### **DNA Damaging Agents Versus Immunosuppresants**



#### **DNA Damaging Agents Versus Immunosuppresants**





#### Summary

- In vitro toxicogenomics is a useful tool for SAR, prioritization of compounds, selection of backup compounds
- 2. Limitation is that safety margins in vivo cannot be determined
- 3. Together with other molecular and cell-based ADMET methods, these efforts should help shift attrition earlier in Drug Discovery



#### Acknowledgements

#### **Cellular and Molecular Toxicology**

Eric Blomme Christine Thiffault

Stephen Abel Rita Ciurlionis

Yi Yang Mike Liguori

**Christy Healan-Greenberg** 

**Brian Spear** 

#### 

Preclinical Safety Don Halbert

Stan Bukofzer Kurt Jarnagin

**Gwo-Jen Day** 

Kyle Kolaja

Jim Neal

